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Abstract 46 

Estimating patterns of habitat use is challenging for marine avian species because seabirds tend 47 

to aggregate in large groups and it can be difficult to locate both individuals and groups in vast 48 

marine environments. We developed an approach to estimate the statistical power of discrete 49 

survey events to identify species-specific hotspots and coldspots of long-term seabird abundance 50 

in marine environments. We illustrate our approach using historical seabird data from survey 51 

transects in the U.S. Atlantic Ocean Outer Continental Shelf (OCS), an area that has been 52 

divided into “lease blocks” for proposed offshore wind energy development. For our power 53 

analysis, we examined whether discrete lease blocks within the region could be defined as 54 

hotspots (3x mean abundance in the OCS) or coldspots (1/3x) for individual species within a 55 

given season.  For each of 25 species, we determined which of eight candidate statistical 56 

distributions (ranging in their degree of skewedness) best fit seasonal count data. We then used 57 

the selected distribution and estimates of regional prevalence to calculate and map statistical 58 

power to detect hotspots and coldspots, and estimate the p-value from Monte Carlo significance 59 

tests that specific lease blocks are in fact hotspots or coldspots relative to regional average 60 

abundance.  The power to detect species-specific hotspots was higher than that of coldspots for 61 

most species because species-specific prevalence was relatively low (mean: 0.111; SD: 0.110).  62 

The number of surveys required for adequate power (>0.6) was large for most species (tens to 63 

hundreds) using this hotspot definition.  Regulators may need to accept higher proportional effect 64 

sizes, combine species into groups, and/or broaden the spatial scale by combining lease blocks in 65 

order to determine optimal placement of wind farms.  Our power analysis approach provides a 66 

general framework for both retrospective analyses and future avian survey design and is 67 

applicable to a broad range of research and conservation problems.   68 
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 72 

1. Introduction 73 

 Understanding the distribution and abundance patterns of marine species is important not 74 

only to address fundamental ecological questions on species habitat use and movement but also 75 

to evaluate potential impacts of human activities, such as energy development, on marine 76 

populations and communities (Louzao et al. 2006, Nur et al. 2011). Offshore renewable energy 77 

development is increasingly common in both Europe and the United States with potential long-78 

term consequences for marine species (Garthe and Hüppop 2004).  Wind farms can cause 79 

declines in seabird populations through direct impacts from collision (Hüppop et al. 2006) or 80 

indirect impacts such as displacement due to disturbance and habitat loss or disruption of 81 

migratory pathways (Drewitt and Langston 2006).  Evaluating the potential consequences of 82 

alternative energy development necessitates a clear understanding of species spatial distributions, 83 

abundances, and habitat use to identify sensitive areas in need of protection (Huettman and 84 

Diamond 2001, Ford et al. 2004).  One important way to reduce risks associated with offshore 85 

energy facilities is through scientifically informed marine spatial planning processes that identify 86 

and avoid areas that are seabird “hotspots” (high use areas).  It is equally useful to determine 87 

“coldspot” locations (areas of low use) where wind farms can be safely implemented with 88 

minimal risks to seabirds. 89 

There are several difficulties in identifying species hotspots and coldspots in marine 90 

environments.  The first is that sampling in the ocean, particularly in offshore areas, is expensive 91 
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and logistically difficult due to remote survey locations and variable climatic conditions.  92 

Although seabird sampling methodology is relatively standardized, data can be collected using 93 

either aircraft or ships and continuous or discrete transects (Tasker et al. 1984).  Additionally, the 94 

number and duration of studies is much smaller as compared to terrestrial locations, such that it 95 

is difficult to use any one survey effort to determine hotspot/coldspot locations and combining 96 

data requires standardizing across sampling discrepancies (Smith et al. 2014).  The second issue 97 

is that seabird populations tend to have patchy aggregations with extremely skewed distributions 98 

(Beauchamp 2011). Thus, typical statistical distributions that are used to model counts (e.g., 99 

Poisson, negative binomial) may not be appropriate for seabird data (Zipkin et al. 2014).  The 100 

disparate data on seabirds and the uncertainty on how to model available data creates a challenge 101 

for identification of consistent long-term patterns in occurrence and abundance of marine birds.   102 

We present a framework for assessing species hotspots and coldspots – including the 103 

necessary amount of data – which accounts for the extreme skewedness observed in seabird 104 

count data.  We apply our approach to data from the Outer Continental Shelf (OCS) of the 105 

Atlantic Ocean in the eastern United States, a proposed area for offshore wind energy 106 

development (Bowes and Allegro 2012).  Ongoing research efforts have focused on compiling 107 

all available seabird data in the OCS into the Atlantic Seabird Compendium (O’Connell et al. 108 

2009), allowing an unprecedented opportunity to examine species’ uses of the marine 109 

environment.  Detailed spatio-temporal models of the occurrence and abundance of birds and 110 

other highly mobile species in the offshore marine environment are challenging (Smith et al. 111 

2014). Our purpose here is not to create such a complicated model, but instead to develop a 112 

general framework that can be applied with a minimum of input data to provide a first-order 113 

estimate of retrospective and prospective statistical power to guide interpretation of past data 114 
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collection efforts and planning of future surveys.  Although we focus our approach on seabirds in 115 

the Atlantic Ocean for the specific topic of wind energy development, our framework should be 116 

useful in identifying hotspots/coldspots for other animal species that aggregate (e.g., insects, 117 

fish). 118 

 119 

2. Material and methods 120 

Our objective is to determine the number of surveys required for sufficient statistical 121 

power to detect whether the long-term mean of a species count of individuals (0,1,2,….,100,…) 122 

in standardized surveys at a given location is larger (i.e., a hotspot) or smaller (i.e., a coldspot) 123 

than some a priori reference mean by a meaningful amount.  The terms hotspot and coldspot 124 

have held a variety of interpretations in the scientific community and popular literature.  In this 125 

case, we define a location as a species-specific hotspot if the mean count of individuals (i.e., 126 

abundance) of that species, conditional on presence, is more than three times the mean of the 127 

non-zero counts in some predefined reference region.  We similarly define a species-specific 128 

coldspot as a location where the mean count of individuals of that species, conditional on 129 

presence, is less than one-third the mean of the non-zero counts in some predefined reference 130 

region.  Other proportional effect sizes could easily be substituted, as appropriate.  Our analyses 131 

are focused on defining hotspots and coldspots for individual species based on their prevalence 132 

in a region and their abundance at specific locations within seasons.  Other metrics, such as 133 

species richness or community composition, could be used for defining hotspots/coldspots but 134 

are not considered here.   135 

We assume that the abundance of a given species at a particular location in time is the 136 

outcome of a two-component random process known as a hurdle model (Mullahy 1986).  In a 137 
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hurdle model, abundance is 0 with probability 1-∅, and non-zero with probability ∅ (also 138 

referred to as the occurrence probability) according to a Bernoulli distribution.  If abundance is 139 

non-zero, then the count of individuals (i.e., the group sizes 1,2,3,…) is distributed according to a 140 

discrete probability mass function with positive integer support.  141 

Using this modeling framework, we can calculate the probability of detecting a 142 

hotspot/coldspot given that a location is a hotspot/coldspot for a specific number of sampling 143 

events.  Conversely, we can determine the number of sampling events that are necessary to 144 

detect a hotspot/coldspot with a certain level of power.  With spatially referenced count data, we 145 

can also use the mean of a location’s counts and the number of surveys that have been conducted 146 

to calculate a p-value for evaluation of the null hypothesis that the location is not a 147 

hotspot/coldspot.  To do this, we must determine for each species: 1) its prevalence (occurrence 148 

probability) in the reference region (for the Bernoulli portion of the hurdle model) and 2) the 149 

discrete probability distribution that best describes the distribution of non-zero counts (i.e., the 150 

species’ group sizes) within the reference region (for the abundance component of the hurdle 151 

model). We then implement a one-sample Monte Carlo significance test (Hope 1968; section 152 

2.3) to test for either hotspots/coldspots at given sampling locations using the estimate of 153 

prevalence (as a surrogate for the ∅ parameter), the mean of the fitted distribution (as a surrogate 154 

of the mean for the reference region), and the parameter estimates from the fitted discrete 155 

statistical distribution that describes the non-zero counts.  156 

 157 

2.1. Atlantic Seabird Compendium 158 

The data for each seabird species come from the Atlantic Seabird Compendium, which 159 

contains the largest collection of scientific seabird surveys conducted within the Atlantic Ocean 160 
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(O’Connell et al. 2009).  We defined our reference region as the Outer Continental Shelf (OCS), 161 

the area currently being considered for renewable energy leasing by the Bureau of Ocean Energy 162 

Management (BOEM).  This area has been divided into 48 446 lease blocks that are roughly 5 163 

km2 in area (Appendix A, Figure A1).   164 

The raw data consist of ship-based and aerial visual observations along fixed-width 165 

survey-transects recording the species and number of birds seen in each discrete time strip, or at 166 

each location along continuous time strips.  Observers were generally trained to avoid double 167 

counting individuals but survey-specific observation errors are unknown.  We used a total of 32 168 

datasets that were collected between 1978-2010, 28 of which were ship-based while the 169 

remaining 4 were conducted from fixed-wing aircraft (Appendix A, Table A1, Figures A2-A6).  170 

Most of the surveys (28 total; 24 ship-based and 4 aerial) were conducted using the continuous 171 

time strip method.  The four discrete time strip surveys were all ship-based and generally 172 

conducted for fixed 15-minute intervals on ships traveling at approximately 10 knots.  We 173 

segmented all continuous time strip survey data (both ship-based and aerial) into transects of 174 

4.63km, equivalent to the distance covered by a ship moving at 10 knots for 15 minutes, to 175 

standardize the data across the two survey platforms and to match the discrete time surveys.  We 176 

eliminated all transect segments shorter than 60% (2.78km) of this distance, and any discrete 177 

time strip surveys shorter than 10 minutes (n=209 removed transects).  This allowed the 178 

remaining discrete and continuous time strip transect segments to be compared on an 179 

approximately common basis, “15-minute-ship-survey-equivalents.”  The resulting data 180 

consisted of 44 176 transects that covered our reference region (the OCS) with approximately 181 

84% having lengths of 4.63km (and the remainder having lengths no less than 2.78km).  Each 182 

standardized transect segment was then assigned to a BOEM lease block based on its centroid, 183 
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such that all count data from a specific transect was assumed to have been observed in the 184 

corresponding lease block.  All count data for a single species were then summed for each 185 

transect, date, dataset combination.  We tabulated the number of samples for each lease block 186 

within each season and assumed that if a transect was flown/cruised and a given species was not 187 

recorded then it was not present (because none of the surveys recorded species absences). 188 

Although it is likely that this standardization did not fully resolve all differences among survey 189 

platforms and protocols, we believe that it accounted for the major differences among surveys. 190 

Because species habitat uses and aggregations can vary throughout the year, we analyzed 191 

the count data for each species separately by season (spring = March 1 to May 31; summer = 192 

June 1 to August 31; fall = September 1 to November 30; winter = December 1 to February 193 

28/29) and only considered counts where individuals were identified to species (approximately 194 

88% of records in the data).  We detected no temporal or spatial correlation in observations of 195 

the same species on repeated occasions within seasons (observations were usually separated by 196 

at least several days) using a semivariogram analysis of the log-transformed data (Kinlan et al. 197 

2012), and thus did not include temporal or spatial components in our analyses.  For each 198 

species/season combination, we assumed that a species’ prevalence was the proportion of 199 

occurrences within a season relative to the total number of transects surveyed within that season 200 

(i.e., number of occurrences divided by number of transects surveyed).   201 

 202 

2.2. Model fitting and selection 203 

To identify candidate distributions for the non-zero component of the hurdle model, we 204 

conducted an extensive literature review of recent and historical papers that attempted to 205 

statistically describe or model animal group sizes or counts of individuals.  Identifying 206 
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appropriate statistical distributions for analyzing count data of animal populations is an ongoing 207 

area of interest in ecology and can be particularly challenging for seabirds, where both single 208 

individuals and large aggregations are frequently observed (Bonabeau et al. 1999, Griesser et al. 209 

2011, Zipkin et al. 2010).  There are several studies that discuss the ecological and statistical 210 

principles as to why aggregations of animals occur in nature (e.g. Beauchamp 2011, Clauset et 211 

al. 2009, Jovani et al. 2008, Ma et al. 2011, Niwa 2003, Okubo 1986), much of which is 212 

summarized in Zipkin et al. (2014). 213 

Based on this literature review, we identified a set of eight discrete probability 214 

distributions that could describe the non-zero counts of seabird data (i.e., the non-zero 215 

component of the hurdle model).  These candidate distributions span the spectrum of possible 216 

mean to variance ratios that could be observed in animal data (Table 1).  Five of these 217 

distributions naturally have positive integer support: geometric, logarithmic, discrete power law 218 

(which we refer to as the zeta), discrete power law with exponential cutoff (referred to as the zeta 219 

decay), and Yule-Simon (referred to as the Yule).  The other three distributions, Poisson, 220 

negative binomial, and discretized lognormal, include 0 in their natural support set and were 221 

truncated for use in the non-zero component of the hurdle model.  The degree of skewedness for 222 

these distributions is ranked as follows (from most heavy tailed to least): zeta ≈ Yule > zeta 223 

decay > discretized lognormal > logarithmic ≈ negative binomial > geometric > Poisson. 224 

We fit each of the eight candidate distributions (Table 1) to available reference data from 225 

the Atlantic Seabird Compendium using maximum likelihood estimation (MLE) in the program 226 

R (version 2.13.2; R Development Core Team 2011).  We used the non-zero count data only 227 

from species that had more than 200 observations for a season because it is difficult to 228 

distinguish between competing models when sample sizes are small (Beauchamp 2011, Clauset 229 
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et al. 2009, Myers and Pepin 1990).  We used the VGAM package (Yee 2010) to estimate 230 

parameters for the positive Poisson, positive negative binomial, geometric, logarithmic, zeta, and 231 

the Yule.  We used the methods and code in Clauset et al. (2009) to estimate the parameters for 232 

the truncated discretized lognormal and zeta decay distributions.  For model selection purposes, 233 

we calculated the log-likelihood of each model fit and ranked the models according to Akaike’s 234 

Information Criterion corrected for finite (i.e., small) sample sizes (AICc; Burnham and 235 

Anderson 2002).  We then used the Vuong closeness test (Vuong 1989) to compare the top 236 

model (i.e., the model with the lowest AICc value) to the fits of the statistical distributions that 237 

were ranked second and third.  The model with the lowest AICc that was also estimated to be 238 

significantly better than the next top models (� < 0.1) was selected for use as a reference 239 

distribution.  We did not conduct power analyses in cases where the Vuong test indicated that the 240 

top models performed equally well because this indicates that there was insufficient data to 241 

adequately determine the appropriate count distribution; but we note that a model-averaging 242 

approach could be implemented in such cases.    243 

 The maximum likelihood parameter estimates for the top model were used to define the 244 

null hypothesis distribution for calculation of the mean count (i.e., the expected count in a lease 245 

block during one sampling event conditional on occurrence) in the reference region as well as 246 

subsequent significance tests and power analyses.  Most distributions used only one parameter, 247 

which we altered to reach the specified effect sizes for the alternative hypothesis tests in the 248 

power analyses.  In cases where the top distribution had two parameters (i.e., the negative 249 

binomial, discretized lognormal, and zeta decay distributions), one parameter (the second 250 

parameter listed in Table 1) was held constant at its estimated value, while the other was adjusted 251 

to give the desired effect size, measured as the ratio of the mean under the alternative hypothesis 252 
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to the mean under the null hypothesis.  Thus, we assumed that the mean of the distribution 253 

changes only as a function of the first parameter, whereas the second parameter is a shape 254 

parameter that remains unchanged for a given species in a season.  We ensured the validity of 255 

this assumption by checking for correlations between the first and second parameter of each 256 

distribution type. No significant correlations were detected (p>0.05) in our datasets.  257 

 258 

2.3. Power analyses 259 

We used the estimate of prevalence (for the Bernoulli component of the model) and the 260 

best fitting discrete distribution (for the count component of the model) for each species/season 261 

combination to: 1) calculate the power to detect a hotspot of effect size three times the 262 

conditional (on presence) reference mean (as estimated using the discrete count distribution) and 263 

a coldspot of effect size one-third of the conditional reference mean in each lease block on the 264 

Atlantic OCS, given the actual number of surveys that had occurred in that lease block; and 2) 265 

estimate the p-value for independent significance tests of the sample mean of each surveyed 266 

lease block against one-tailed hotspot/coldspot alternative hypotheses (i.e., the probability that a 267 

lease block with a specific number of transects and mean count is a hotspot/coldspot for a given 268 

species within a season).  We chose to focus on the mean as our test statistic for abundance data, 269 

because the long-term mean count of individuals in a discrete spatial unit is often a desired 270 

quantity for an environmental impact assessment. However, other test statistics focusing on 271 

different aspects of the distribution (e.g., median, quantile, or extreme value statistics) could be 272 

relevant for specific questions and would likely have different power characteristics.  273 

Because the test statistic is the mean of a potentially small sample, the distribution of the 274 

null hypothesis is not readily available in closed form for many of the candidate distributions.  275 
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Therefore, we derived the critical value (i.e., 3x the mean for hotspots and 1/3x the mean for 276 

coldspots) for the chosen significance level (α=0.05; i.e., Type I error rate) using a Monte Carlo 277 

method. Given the sample size, M, for a lease block we estimated the critical values by drawing 278 

10 000 samples of M random variates from the combined hurdle model using the prevalence in 279 

the region for the Bernoulli component (i.e., probability of a non-zero count) and the probability 280 

distribution determined from the model selection procedure using appropriate random number 281 

generators.  In all cases, we held the prevalence constant at its estimated value.  We then 282 

calculated the conditional sample mean for each of the 10 000 samples and found the 1-α 283 

quantile of the simulated distribution of sample means to estimate the upper critical value and the 284 

α quantile to calculate the lower critical value.  The null hypothesis is rejected at the α 285 

significance level if the observed sample mean exceeds the upper critical value (hotspot case) or 286 

is less than the lower critical value (coldspot case).  We generated power curves for each 287 

species/season combination showing power for the actual sample sizes that were encountered in 288 

the cumulative historical data.  Through this approach, effect sizes are introduced via the non-289 

zero component of the hurdle model.  Thus we assume that differences in the mean arise through 290 

a multiplicative effect on the non-zero component of the hurdle model and not a change in 291 

prevalence.  However, this approach can be easily modified to consider other cases in which 292 

differences arise as a consequence of changes in occurrence probability, or when both occurrence 293 

and non-zero abundance processes change simultaneously.      294 

A similar procedure can be used to derive Monte Carlo p-values for the same one-tailed 295 

hypothesis tests.  For the hotspot case, the p-value is equal to the proportion of simulated sample 296 

means (conditional on presence) that are greater than or equal to the observed sample mean (also 297 

conditional on presence).  For the coldspot case, the p-value is equal to the proportion of 298 



13 

 

simulated sample means that are less than or equal to the observed sample mean.  Model 299 

assumptions and their implications are expanded upon in Appendix B. 300 

  301 

3. Results 302 

3.1. Model fitting and selection 303 

 There were a total of 74 species/season combinations (19 in spring, 18 in summer, 22 in 304 

fall, 15 in winter) that had at least 200 recorded observations in the OCS (Appendix C, Table 305 

C1). The prevalence of these species ranged from 0.016 to 0.419 (mean: 0.111; SD: 0.110) 306 

across all seasons, with mean species prevalence being twice as high in the winter as compared 307 

to the other three seasons: 0.182 (SD: 0.124) in winter, 0.094 (SD: 0.88) in spring, 0.087 (SD: 308 

0.099) in summer, and 0.098 (SD: 0.108) in fall (Appendix C, Table C2).  We fit the eight 309 

discrete probability distributions to the non-zero count data for each of these species/season 310 

combinations.  It was possible to find the maximum likelihood parameter estimates for all 311 

distributions with the species/season combinations, except the Poisson in nine cases and the 312 

negative binomial in seven cases because models did not converge.  There was surprising 313 

consistency in the results with the discretized lognormal having the lowest AICc for 54 of the 314 

species/season combinations (Appendix C, Table C2).  The Yule was the second most common 315 

distribution (10 species/season), followed by the zeta decay (4 species/season), negative 316 

binomial (3 species/season), the logarithmic (2 species/season) and the geometric (1 317 

species/season).   318 

There were only 41 species/season combinations (11 in the winter, 11 in the spring, 7 in 319 

the summer, 12 in the fall) where the top model (as estimated using AICc) had a significantly 320 

better fit then the next best model according to the Vuong pairwise closeness test (� < 0.1).  Of 321 
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the cases where there was a clear best fitting model, the discretized lognormal distribution was 322 

the top model for 38 species/season combinations; the Yule, negative binomial, and zeta decay 323 

distributions each had the best fit in one case (Appendix C, Table C2). The Yule distribution had 324 

a significantly better fit than all other distributions for the Great Black-backed Gull data in the 325 

winter.  However, the mean of the Yule distribution is undefined when the parameter is 326 

estimated to be less than one, as was the case here.  As such, we excluded the winter Great 327 

Black-backed Gull data from further analysis. 328 

 329 

3.2. Power analyses 330 

 In all cases, the power to detect hotspots was greater than the power to detect coldspots 331 

for lease blocks with low sample sizes (i.e., approximately less than 25-30 samples; Figure 1; 332 

Appendix C, Figure C2).  For species that had low prevalence (less than 15-19%), the power to 333 

detect hotspots was typically greater throughout the observed range (1-79 in winter, 1-59 in 334 

spring, 1-81 in summer, 1-61 in fall) of sampling events in lease blocks.  This is a logical result 335 

given how coldspots are defined as lease blocks with less than a third of the average count 336 

conditional on presence.  Under this definition, it is more difficult to detect whether a location is 337 

truly a coldspot for species that have low occurrence in the reference region.  For species with 338 

higher prevalence, the ability to detect coldspots increased quickly with additional sampling 339 

events such that it was easier to detect coldspots than hotspots for locations with a large number 340 

of samples (i.e., approximately greater than 30-40 samples; Appendix C, Figure C2).  Again, this 341 

result has an intuitive explanation: observing a small number of individuals (or none at all) from 342 

a species that is reasonably common over a large number of sampling events suggests that a 343 

location may be a coldspot, whereas multiple detections of that same, common species does not 344 
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necessarily indicate that a location is a hotspot, especially considering that counts of seabirds 345 

come from highly skewed distributions (see model fitting results).   346 

In general, the power to detect hotspots and coldspots within lease blocks in the OCS was 347 

low for most species, even for locations with large numbers of samples.  More than half of the 348 

species/season combinations had less than 50% maximum power of detecting both hotspots and 349 

coldspots (Appendix C). The average ability to detect coldspots among species was lower than 350 

that of hotspots across all seasons (Appendix D) and was less than 40% for even the most 351 

heavily sampled regions when all seasons were combined (Figure 2).  However, some individual 352 

species had reasonable power across the region, which allows for examination of species patterns 353 

of hotspots and coldspots in the OCS.  For example, Northern Gannets had a fairly high 354 

prevalence (>20%) and sufficient data for analyses in winter, spring, and fall.  Using our power 355 

analysis approach, we were able to determine that most of Nantucket Sound is a coldspot for 356 

Northern Gannets in the winter but tends to be a mix of hot and coldspots for the species in the 357 

spring and fall.  Similarly, there are large areas approximately 150-250 km off the east coast of 358 

the United States from Delaware to Rhode Island that are hotspots for Northern Gannets during 359 

the spring (Figure 3).  Additional maps of other species’ hot and coldspots in the Atlantic OCS 360 

are presented in Appendix E. 361 

  362 

4. Discussion 363 

We developed a general method for defining species-specific hotspots and coldspots of 364 

abundance for marine birds and for assessing the significance and statistical power to detect 365 

these locations.  Our approach: 1) can serve as the basis for the design of statistically robust 366 

surveys to detect departures from regional average patterns of abundance/occurrence and 2) 367 
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represents a methodology for using existing marine bird survey data to assess the state of 368 

knowledge about relative hotspots and coldspots in offshore areas.  The power analysis 369 

framework accurately accounts for the extreme variation observed in seabird count data, where 370 

both individuals and large aggregations are detected, and can additionally accommodate data 371 

from disparate surveys.  Researchers and conservation managers can use our results to determine 372 

the number of surveys necessary to detect hot and coldspots for a particular species using the 373 

species-specific power curves (Appendix C).  Furthermore, as we demonstrated with our case 374 

study in the Atlantic OCS, all available data in a particular region can be combined to map out 375 

hotspot and coldspot locations for seabirds using this approach (e.g., Figure 3 and Appendix E).   376 

We illustrated our approach for the specific task of defining hotspots and coldspots of 377 

species abundances at the spatial scale that management decisions are made for wind energy 378 

development (using one set of proportional effect sizes, 3x and 1/3x, as an example).  We found 379 

that adequate statistical power (>0.6) for even the most prevalent species is not achieved at these 380 

proportional effect sizes until the number of sampling events exceeds 40 (within a particular 381 

season).  For less frequently observed species, more than 100 independent sampling events are 382 

necessary to characterize lease blocks as hotspots or coldspots (Appendix C).  Studies examining 383 

offshore wind energy development in Europe have similarly found that survey efforts must be 384 

intensive to detect even large changes in seabird abundance between pre- and post- construction 385 

(Maclean et al. 2012, Vanermen et al. 2015).  Management decisions on turbine construction are 386 

likely to be made on the spatial scale of lease blocks and as such, it is a necessary first step to 387 

understand the statistical power of surveys on that fine spatial scale.  However, in many cases it 388 

is not be practical to conduct such large numbers of sampling events.   389 



17 

 

A number of possible remedies could be implemented to increase power for hotspot or 390 

coldspot detection.  First, data on species could be combined so as to determine group- or guild-391 

specific hotspot and coldspot locations.  Although information is lost at the species level in this 392 

approach, statistical power is higher and analyses could include inferences on rare species, which 393 

were excluded in our study.  A pooled approach also allows data on unidentified individuals to 394 

be incorporated into analyses, increasing sample sizes.  Examining broad groups such as gulls, 395 

loons, seaducks, or even more general, bottom-feeders, provides information on community level 396 

hotspots and coldspots, which is equally important for species conservation and management.  397 

Second, the spatial grain of power analyses could be expanded.  Although we did not detect 398 

spatial correlation at the lease block level, predictive modeling of long-term average seabird 399 

distributions in this region have found spatial autocorrelation at scales of up to 10-15 km (Kinlan 400 

et al. 2012). Furthermore, typical offshore wind projects are likely to be larger than the 5x5 km 401 

(25 km2) lease blocks.  Power analyses conducted on aggregations of 2x2 or 3x3 BOEM lease 402 

blocks (i.e., areas of 100-225 km2) may thus be acceptable for management decisions and would 403 

provide improved statistical power.  Finally, other metrics such as species prevalence or 404 

maximum abundance can be used in future power analyses.  The low power to detect hotspot and 405 

coldspots based on mean abundances is partially due to the extreme skewedness observed in 406 

group sizes.  Simplifying the data to presence/absence or modifying the analysis approach to 407 

explicitly account for variation in prevalence could increase power.  Definitions of hot and 408 

coldspots could also be modified to be more stringent (e.g., 10x, 1/10x) thereby increasing power 409 

to detect such larger proportional effect sizes. 410 

 Our power analysis approach represents a straightforward and effective way to assess the 411 

amount of data necessary to determine areas of high and low use for a broad range of marine 412 
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avian species.  Although our method is necessarily simplified so as to be widely applicable, it 413 

suffices for a first order analysis of historical seabird data and should additionally be useful in 414 

the design of future surveys and conservation planning.  When applying our power analysis 415 

method, researchers will need to decide the appropriate spatial and temporal scales relevant to 416 

their specific questions and determine both the appropriate effect sizes and reference region(s) 417 

for biologically meaningful hotspots and coldspots.  For example, reference regions might be 418 

stratified by biogeographic breaks, distance-from-shore, bathymetric bands, or on boundaries of 419 

major management areas.  Results of the power analysis and subsequent guidelines for the 420 

appropriate number of surveys will certainly depend on the scientific questions and possibly also 421 

on management or regulatory decisions.  Wind energy development in the OCS of the U.S. 422 

Atlantic Ocean will undoubtedly impact marine species distributions and could alter population-423 

level abundances.  Our power analysis revealed that it may be difficult to assess the effects of 424 

turbines on seabirds at the spatial scale of lease blocks, the proposed planning unit.  Using our 425 

methodology, future analyses can leverage existing data to identify locations that require greater 426 

survey effort and maximize the probability of detecting locations with irregular 427 

abundance/occurrence patterns.   428 
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Table 1.  Parameters and probability mass functions for the eight candidate distributions used for 524 

model fitting.  In all cases, the support is defined for positive integers, � ∈ 	1,2,3, … �.  525 

Specifications of all distributions are taken from Yee (2010) except for the discretized lognormal 526 

(which is truncated so as not to include 0 in the support) and zeta decay (zeta with exponential 527 

cutoff), which are specified as in Clauset et al. (2009). Symbols are explained in the notes 528 

column.  529 
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 530 

 531 

Distribution Parameters Probability mass function Notes 

Positive 

Poisson 
λ > 0 

λ�
�! ���

1 − ��� 

λ is both the mean and the variance  

Positive 

negative 

binomial 

� > 0 
� > 0 

��(� + �)�! �(�) � � �� + � ! � �� + � "

1 − � �� + � "  

� is the mean and 1/k is the 

dispersion of the corresponding 

untruncated negative binomial 

distribution. �() denotes the 

gamma function. 

Geometric 0 < � ≤ 1 �(1 − �)!�$ 

1/p is the mean 

Logarithmic 0 < � < 1 
−1

%&(1 − �)
�!
�  

�$
'(($�))

)
$�) is the mean 

Positive 

discretized             

lognormal 

� 
* > 0 

+!)��('( (!�-..)�/)0
120 �

(!�-..)31420   �  +!)��('( (!5-..)�/)0
120 �

(!5-..)31420

6 2
7*1  ��� �− (%& (0.5) − �)1

2*1 �
 

� is the mean and * is the standard 

deviation of the corresponding 

continuous, untruncated lognormal 

distribution.  Note that � and * are 

expressed in natural log-

transformed units from the original 

scale. exp() denotes the exponential 

function, ln() denotes the natural 

logarithm function. 

Zeta 

(Discrete 

Power Law) 

9 > 0 

1
�:5$ ; 1

&:5$
<

(=$
>  

                   

9 is the exponent of the 

distribution. & is a variable used in 

the summation.  The infinite series 

summation in the denominator is 

Riemann’s zeta function. 

Zeta with 

exponential 

cutoff 

9 > 0 
λ ≥ 0 

� 1
�:5$exp (C�)� ; 1

&:5$exp (C&)
<

(=$
>  

 

9 is the exponent of the 

distribution, and λ is the exponential 

rate of decay of the power law tail.  

& is a variable used in the 

summation. The infinite series 

summation in the denominator 

must be approximated numerically.  

Yule 9 > 0 
: D(!)D(:5$)

D(!5:5$)                                         

9 is the shape parameter of the 

distribution, and behaves similarly 

to the 9 parameter of zeta and zeta 

with exponential cutoff 

distributions. �() denotes the 

gamma function. 
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 534 

 535 

 536 

Figure 1. Average simulated power for hotspots (red lines) and coldspots (blue lines) and 95% 537 

confidence intervals (dashed lines) for all species in each of the four seasons.  We generated the 538 

individual species power curves using the approach specified in the methods and then 539 

approximated the mean and 95% confidence intervals across species by fitting a regression with 540 
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a probit transformation (Murphy et al. 2008) to each of the individual species’ results, which 541 

smoothed the curves.  This allowed us to summarize the general patterns across species and 542 

generate predictions beyond the range of available sampling data.  The red and blue circles 543 

indicate the (non-smoothed) mean across species of the simulated power for hotspots and 544 

coldspots, respectively, as estimated using the species’ power curves presented in Appendix C. 545 

 546 
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 547 

Figure 2. Average power to detect hotspots (left panel) and coldspots (right panel) for all species/season combinations. 548 



28 

 

 549 



29 

 

Figure 3.  The p-values (≤0.2) for lease blocks within the OCS that indicate possible hotspot 550 

(shades of red) and coldspot (shades of blue) locations for Northern Gannets in the winter, 551 

spring, and fall seasons.  Blocks in shades of grey show the average power to detect whether a 552 

lease block is a hotspot or coldspot for Northern Gannets in instances where the hot/coldspot p-553 

value was greater than 0.2.   Thus the darkest grey shading indicates lease blocks not identified 554 

as significant hotspots or coldspots, and for which we can be confident in that result because 555 

there was relatively high power to detect a hotspot or coldspot, had it existed.  Light grey 556 

shading indicates lease blocks not identified as significant hotspots or coldspots, but for which 557 

there was little or no statistical power.  The darkest blue lease blocks can be regarded as the most 558 

significant coldspots, the darkest red lease blocks as the most significant hotspots, and the 559 

darkest grey blocks as places most likely to be neither hotspots nor coldspots. Blank (white) 560 

polygons indicate lease blocks in which no presences of this species were observed.   Additional 561 

maps of other species’ hot and coldspots are presented in Appendix E. 562 




